Wednesday, 12 August 2020

101 Binomial Theorem Sample Questions

  

The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are non-negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example (for n = 4),


According to the theorem,

it is possible to expand any non-negative power of (x + y) into a sum of the form —

(x+y)^{n}={n \choose 0}x^{n}y^{0}+{n \choose 1}x^{n-1}y^{1}+{n \choose 2}x^{n-2}y^{2}+\cdots +{n \choose n-1}x^{1}y^{n-1}+{n \choose n}x^{0}y^{n},

Download the PDF file at here

https://www.onlinestudymart.com/binomial_theorem_101_sample_questions/

No comments:

Post a Comment